If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-15925=0
a = 1; b = 1; c = -15925;
Δ = b2-4ac
Δ = 12-4·1·(-15925)
Δ = 63701
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{63701}}{2*1}=\frac{-1-\sqrt{63701}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{63701}}{2*1}=\frac{-1+\sqrt{63701}}{2} $
| 9v^2-12v-5=0 | | 2q^2+11q+9=0 | | m^2+8+2=0 | | -2=5x+6 | | (2+x)^2-15=210 | | (1+x)^5=0.75 | | 6+x-18=6x-17 | | 3(w+6)=9w-42 | | 8x-2+56=19x+4 | | 7/8y-5/8=2 | | 9m+10-14m=-6 | | 35=6e | | 3n-10=10n-34 | | 3b^2+0= | | 4(k-2)=4k+4(k+8) | | 7(x+4=70 | | 4x+3-7x=9-3x | | d+5=-28 | | 7a^2-32=31 | | 120/d40;d=3 | | -15x+40=5x | | 5(u-8)=-4u+32 | | 3x-3=33=3x | | 4e+7e+5=11e+5 | | Y=-6/5x+2 | | -11=3t+7 | | -x-6(13x)=127 | | (√2x-3)+5=11 | | 2÷3x+2÷3x=7÷8 | | 4x+8-2x=-4 | | (13x-37)+(5x+1)=180 | | 7x=57-1 |